Continuous Glimm-type Functionals and Spreading of Rarefaction Waves∗

نویسندگان

  • PHILIPPE G. LEFLOCH
  • KONSTANTINA TRIVISA
چکیده

Several Glimm-type functionals for (piecewise smooth) approximate solutions of nonlinear hyperbolic systems have been introduced in recent years. In this paper, following a work by Baiti and Bressan on genuinely nonlinear systems we provide a framework to prove that such functionals can be extended to general functions with bounded variation and we investigate their lower semi-continuity properties with respect to the strong L1 topology. In particular, our result applies to the functionals introduced by Iguchi-LeFloch and Liu-Yang for systems with general fluxfunctions, as well as the functional introduced by Baiti-LeFloch-Piccoli for nonclassical entropy solutions. As an illustration of the use of continuous Glimm-type functionals, we also extend a result by Bressan and Colombo for genuinely nonlinear systems, and establish an estimate on the spreading of rarefaction waves in solutions of hyperbolic systems with general flux-function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolicity singularities in rarefaction waves∗

For mixed-type systems of conservation laws, rarefaction waves may contain states at the boundary of the elliptic region, where two characteristic speeds coincide, and the Lax family of the wave changes. Such contiguous rarefaction waves form a single fan with a continuous profile. Different pairs of families may appear in such rarefactions, giving rise to novel Riemann solution structures. We ...

متن کامل

Transonic Shock Formation in a Rarefaction Riemann Problem for the 2D Compressible Euler Equations

It is perhaps surprising for a shock wave to exist in the solution of a rarefaction Riemann problem for the compressible Euler equations in two space dimensions. We present numerical evidence and generalized characteristic analysis to establish the existence of a shock wave in such a 2D Riemann problem, defined by the interaction of four rarefaction waves. We consider both the customary configu...

متن کامل

Hyperbolic Conservation Laws An Illustrated Tutorial

These notes provide an introduction to the theory of hyperbolic systems of conservation laws in one space dimension. The various chapters cover the following topics: 1. Meaning of a conservation equation and definition of weak solutions. 2. Hyperbolic systems. Explicit solutions in the linear, constant coefficients case. Nonlinear effects: loss of regularity and wave interactions. 3. Shock wave...

متن کامل

DECAY OF ENTROPY SOLUTIONS OF NONLINEAR CONSERVATION LAWS GUI-QIANG CHEN & HERMANO FRID Dedicated to

We are concerned with the asymptotic behavior of entropy solutions of nonlinear conservation laws. The main objective of this paper is to present an analytical approach and to explore its applications to studying the large-time behavior of periodic entropy solutions of hyperbolic conservation laws. The asymptotic decay of periodic solutions of nonlinear hyperbolic conservation laws is an import...

متن کامل

LINEAR WAVES THAT EXPRESS THE SIMPLEST POSSIBLE PERIODIC STRUCTURE OF THE COMPRESSIBLE EULER EQUATIONS∗ Dedicated to Professor James Glimm on the occasion of his 75th birthday

In this paper we show how the simplest wave structure that balances compression and rarefaction in the nonlinear compressible Euler equations can be represented in a solution of the linearized compressible Euler equations. Such waves are exact solutions of the equations obtained by linearizing the compressible Euler equations about the periodic extension of two constant states separated by entr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004